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Abstract

A bivariate competing risks problem is considered for a rather general class of survival models. The lifetime distribution of
each component is indexed by a frailty parameter. Under the assumption of conditional independence of components the correlated
frailty model is considered. The explicit asymptotic formula for the mixture failure rate of a system is derived. It is proved that
asymptotically, as t → ∞, the remaining lifetimes of components tend to be independent in the defined sense. Some simple
examples are discussed.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that mixtures of distributions are a convenient tool for analyzing univariate frailty models. As
monotonicity properties of the mixture failure rate can differ dramatically from those of the baseline failure rate,
this topic was thoroughly investigated in the literature (see Badia et al. (2001), Block et al. (1993), Finkelstein and
Esaulova (2001) and Lynch (1999), to name a few). Considerable attention was also paid to the asymptotic behavior
of mixture failure rates (Block et al., 2003; Finkelstein and Esaulova, 2006; Shaked and Spizzichino, 2001).

In our paper (Finkelstein and Esaulova, 2006) a general class of lifetime models with frailties were considered.
A basic model for F(t, z) — an absolutely continuous cumulative distribution function (Cdf) of a lifetime random
variable T , was defined as

Λ(t, z) = A(zφ(t))+ ψ(t), (1)

where Λ(t, z) =
∫ t

0 λ(u, z)du is the corresponding cumulative failure rate and z is a realization of frailty Z . The
general assumptions on the functions involved were rather natural: A(s), φ(t) and ψ(t) are differentiable, the right-
hand side of (1) is non-decreasing in t and increases to infinity as t → ∞, and A(zφ(0))+ ψ(0) = 0.
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Many of the models popular in reliability, survival analysis and risk analysis (proportional hazards (PH), additive
hazards (AH) and accelerated life (ALM) models), are obviously special cases of (1):

PH (multiplicative) model:
Let

A(u) ≡ u, φ(t) = Λ(t), ψ(t) = 0.

Then

λ(t, z) = zλ(t), Λ(t, z) = zΛ(t). (2)

Accelerated life model:
Let

A(u) ≡ Λ(u), φ(t) = t, ψ(t) = 0.

Then

Λ(t, z) =

∫ t z

0
λ(u)du = Λ(t z), λ(t, z) = zλ(t z). (3)

AH model:
Let

A(u) ≡ u, φ(t) = t, ψ(t) is increasing, ψ(0) = 0.

Then

λ(t, z) = z + ψ ′(t), Λ(t, z) = zt + ψ(t). (4)

Under the stated assumptions and using some additional technical conditions for the pdf of the frailty Z , we derived
exact asymptotic relations for the corresponding mixture failure rate λm(t) as t → ∞ (Finkelstein and Esaulova,
2006).

In the current study we use and develop asymptotic methodology employed for the univariate case for analyzing
the behavior of failure rates in the competing risk setting with a bivariate frailty.

Section 2 is devoted to basic definitions and some supplementary simple non-asymptotic properties of mixture
failure rates with independent frailties.

In Section 3 we obtain explicit asymptotic results, which above, all show, that even in the case of correlated frailty
the components’ remaining lifetimes can be considered as ‘asymptotically independent’ in the defined sense.

In Section 4 we provide some relevant examples and discuss the restrictions of our assumptions. It is worth noting
that the generalization of our results to the multivariate case when n > 2 is rather straightforward.

2. Bivariate frailty and competing risks

Assume that risks are dependent only via the bivariate frailty (Z1, Z2). To construct the corresponding competing
risks model consider firstly a system of two statistically independent components in series with lifetimes T1 ≥ 0 and
T2 ≥ 0. The Cdf function of this system is

Fs(t) = 1 − F̄1(t)F̄2(t),

where F1(t) and F2(t) are the Cdfs of the lifetime random variables T1 and T2 respectively (F̄i (t) ≡ 1 − Fi (t)).
Assume now that Fi (t), i = 1, 2 are indexed by random variables Zi in the following conventional sense:

P(Ti ≤ t | Zi = z) ≡ P(Ti ≤ t | z) = Fi (t, z), i = 1, 2

and that the pdfs fi (t, z) exist. Then the corresponding failure rates λi (t, z) are fi (t, z)/F̄i (t, z).
Let Zi , i = 1, 2 be interpreted as non-negative random variables with supports in [ai , bi ], a1 ≥ 0, bi ≤ ∞ and

the pdf πi (z).
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A mixture Cdf for the i th component is defined by

Fm,i (t) =

∫ bi

ai

Fi (t, z)πi (z)dz, i = 1, 2. (5)

The corresponding mixture failure rate is:

λm,i (t) =

∫ bi
ai

fi (t, z)πi (z)dz∫ bi
ai

F̄i (t, z)πi (z)dz
=

∫ bi

ai

λi (t, z)π(z | t)dz, (6)

where the conditional pdf (on the condition that Ti > t):

πi (z | t) = πi (z)
F̄i (t, z)∫ bi

ai
F̄i (t, z)πi (z)dz

. (7)

Assume that the components of our system are conditionally independent given Z1 = z1, Z2 = z2. Then the Cdf
of the system is:

Fs(t, z1, z2) = 1 − F̄1(t, z1)F̄2(t, z2) (8)

and the corresponding probability density function is

fs(t, z1, z2) = f1(t, z1)F̄2(t, z2)+ f2(t, z2)F̄1(t, z1). (9)

The mixture failure rate of the system in this case is defined as

λm,s(t) =

∫ b2
a2

∫ b1
a1

fs(t, z1, z2)π(z1, z2)dz1dz2∫ b2
a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

=

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2, (10)

where

π(z1, z2 | t) = π(z1, z2)
F̄s(t, z1, z2)∫ b2

a2

∫ b1
a1

F̄s(t, z1, z2)π(z1, z2)dz1dz2

, (11)

and π(z1, z2) is the bivariate joint probability density function of Z1 and Z2. It is clear that for our series system,
defined by (8):

λs(t, z1, z2) = λ1(t, z1)+ λ2(t, z2). (12)

It is clear also that if Z1 and Z2 are independent, which means

π(z1, z2) = π1(z1)π2(z2)

for some densities π1(z1) and π2(z2); then

π(z1, z2|t) = π1(z1|t)π2(z2|t),

which can be easily seen using definitions (7) and (11):

π(z1, z2|t) = π1(z1)π2(z2)
F̄1(t, z1)F̄2(t, z2)∫ b2

a2

∫ b1
a1

F̄1(t, z1)F̄2(t, z2)π1(z1)π2(z2)dz1dz2

=
π1(z1)F̄1(t, z1) · π2(z2)F̄2(t, z2)∫ b1

a1
F̄1(t, z1)π1(z1)dz1 ·

∫ b2
a2

F̄2(t, z2)π2(z2)dz2

= π1(z1|t)π2(z2|t).
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Using Eqs. (10) and (12):

λm,s(t) =

∫ b2

a2

∫ b1

a1

λs(t, z1, z2)π(z1, z2 | t)dz1dz2

=

∫ b2

a2

∫ b1

a1

[λ1(t, z1)+ λ2(t, z2)]π1(z1|t)π2(z2|t)dz1dz2

=

∫ b1

a1

λ1(t, z1)π1(z1|t)dz1 +

∫ b2

a2

λ2(t, z2)π2(z2|t)dz2

= λm,1(t)+ λm,2(t). (13)

Hence, when the components of the system are conditionally independent and Z1 and Z2 are independent, the
mixture failure rate of the system is the sum of mixture failure rates of individual components.

It is worth noting that Eq. (13) does not hold for the case of shared frailty, when Z1 ≡ Z2 ≡ Z , as

λms(t) =

∫ b
a fs(t, z)π(z)dz∫ b
a F̄s(t, z)π(z)dz

=

∫ b
a f1(t, z)F̄2(t, z)π(z)dz∫ b

a F̄s(t, z)π(z)dz
+

∫ b
a f2(t, z)F̄1(t, z)π(z)dz∫ b

a F̄s(t, z)π(z)dz

=

∫ b
a λ1(t, z)F̄s(t, z)π(z)dz∫ b

a F̄s(t, z)π(z)dz
+

∫ b
a λ2(t, z)F̄s(t, z)π(z)dz∫ b

a F̄s(t, z)π(z)dz

is not equal to λ1m(t)+ λ2m(t).
In the next section we shall study the asymptotic behavior of mixture failure rates for the most interesting case of

correlated frailty.

3. The main result

Assume that lifetimes of both components belong to the class defined by relation (1). For simplicity let the
unimportant additive term be equal to zero. The corresponding survival functions for the components are

F̄i (t, zi ) = e−Ai (ziφi (t)), i = 1, 2. (14)

The following result is obtained:

Theorem 1. Let the corresponding survival functions in the competitive risks model (8) be defined by Eq. (14).
Suppose that the mixing variables Z1 and Z2 have a joint probability density function π(z1, z2), which is defined

in [0, b1] × [0, b2], 0 < b1, b2 ≤ ∞.
Let the following properties hold:
(a) π(z1, z2) = zα1

1 zα2
2 π0(z1, z2), where α1, α2 > −1.

(b) π0(z1, z2) is continuous at (0, 0), π0(0, 0) 6= 0.
(c) Ai (s), i = 1, 2 are positive ultimately increasing differentiable functions,∫

∞

0
e−Ai (s)sαi ds < ∞.

Assume finally that φ1(t), φ2(t) → ∞ as t → ∞.
Then

λm,s(t) ∼ (α1 + 1)
φ′

1(t)

φ1(t)
+ (α2 + 1)

φ′

2(t)

φ2(t)
. (15)



1178 M. Finkelstein, V. Esaulova / Statistics and Probability Letters 78 (2008) 1174–1180

By the sign ∼ we, as usual, denote the asymptotic equivalence: g1(t) ∼ g2(t) as t → ∞ means that g1(t)/g2(t) →

1 as t → ∞.

Remark. It follows from the additive nature of the left-hand side of (15) and the corresponding result for the univariate
case (Finkelstein and Esaulova, 2006) that the asymptotic mixture failure rate in our model can be viewed as the sum
of univariate mixture failure rates of each component with its own independent frailty. Therefore, taking into account
relation (13), it is easy to arrive at the following important interpretation of the theorem:

Under certain assumptions the asymptotic mixture failure rate in the correlated frailty model with conditionally
independent components is equivalent to the asymptotic mixture failure rate in the independent frailty model.

This can be also considered as some asymptotic independence of remaining lifetimes of our components in the
correlated frailty model.

Proof. We start our proof with the following supplementary lemma:

Lemma 1. Let g(z1, z2) be a non-negative integrable function in [0,∞)2. Let h(z1, z2) be a non-negative locally
integrable function defined in [0,∞)2, such that it is bounded everywhere and continuous at the origin.

Then, as t1 → ∞, t2 → ∞:

t1t2

∫
∞

0

∫
∞

0
g(t1z1, t2z2)h(z1, z2)dz1dz2 → h(0, 0)

∫
∞

0

∫
∞

0
g(z1, z2)dz1dz2.

Proof. The proof is rather straightforward:

t1t2

∫
∞

0

∫
∞

0
g(t1z1, t2z2)h(z1, z2)dz1dz2 =

∫
∞

0

∫
∞

0
g(z1, z2)h

(
z1

t1
,

z2

t2

)
dz1dz2.

Indeed, h(z1, z2) is bounded; assume that it is bounded by some M . The function g(z1, z2) is integrable, then for any
ε > 0 there is a finite b > 0, such that∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2 < ε.

Then ∣∣∣∣∫ ∞

0

∫
∞

0
g(z1, z2)

[
h

(
z1

t1
,

z2

t2

)
− h(0, 0)

]
dz1dz2

∣∣∣∣ ≤

∫ b

0

∫ b

0
g(z1, z2)

∣∣∣∣h (
z1

t1
,

z2

t2

)
− h(0, 0)

∣∣∣∣ dz1dz2

+ 2M
∫∫

[0,∞)2−[0,b]2
g(z1, z2)dz1dz2.

The first double integral tends to zero since h(z1, z2) is continuous at (0, 0), and the second can be made arbitrarily
small. �

Now we can proceed with the proof of the theorem. Substituting (8) and (9) into (10) we get

λm,s(t) =

∫ b1
0

∫ b2
0 f1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1∫ b1

0

∫ b2
0 F̄1(t, z1)F̄2(t, z2)π(z1, z2)dz2dz1

+

∫ b2
0

∫ b1
0 f2(t, z2)F̄1(t, z1)π(z1, z2)dz1dz2∫ b2

0

∫ b1
0 F̄2(t, z1)F̄1(t, z1)π(z1, z2)

. (16)

Denote the first term on the right-hand side by λ1
m,s(t) and the second one by λ2

m,s(t). Then

λm,s(t) = λ1
m,s(t)+ λ2

m,s(t).

Consider λ1
m,s(t) and λ2

m,s(t) separately. The probability density function of T1 is

f1(t, z1) = A′

1(z1φ1(t))z1φ
′

1(t)e
−A1(z1φ1(t)) (17)

and

λ1
m,s(t) =

∫ b1
0

∫ b2
0 A′

1(z1φ1(t))z1φ
′

1(t)e
−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1∫ b1

0

∫ b2
0 e−A1(z1φ1(t))−A2(z2φ2(t))π(z1, z2)dz2dz1

.
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Applying the lemma to the numerator, we see that it is asymptotically equivalent to

φ′

1(t)π0(0, 0)

φ1(t)α1+2φ2(t)α2+1

∫
∞

0
A′

1(u)u
α1+1e−A1(u)du

∫
∞

0
sα2 e−A2(s)ds

and the denominator is equivalent to

π0(0, 0)

φ1(t)α1+1φ2(t)α2+1

∫
∞

0
uα1e−A1(u)du

∫
∞

0
sα2 e−A2(s)ds.

Hence,

λ1
m,s(t) ∼

φ′

1(t)

φ1(t)
·

∫
∞

0 A′

1(u)u
α1+1e−A1(u)du∫

∞

0 uα1 e−A1(u)du
. (18)

Due to condition (c) of the theorem

e−A(s)sα+1
→ 0 as s → ∞. (19)

Indeed, by the mean value theorem:∫ 2s

s
e−A(u)uαdu = se−A(s1)sα1

for some s ≤ s1 ≤ 2s. The right-hand side tends to 0. For s larger than some s0 we have A(s1) > A(s); thus, the
left-hand side is smaller than 2αsα+1e−A(s), which leads to (19). Using it while integrating by parts, we get∫

∞

0
A′(s)e−A(s)sα+1ds = (α + 1)

∫
∞

0
e−A(s)sαds. (20)

Thus, from (18)

λ1
m,s(t) ∼ (α1 + 1)

φ′

1(t)

φ1(t)
.

Similarly,

λ2
m,s(t) ∼ (α2 + 1)

φ′

2(t)

φ2(t)
. �

4. Discussion

Assumptions (a) and (b) of the theorem impose certain restrictions on the mixing distribution. The corresponding
conditions in the univariate case are satisfied for a wide class of distributions (admissible class), such as Gamma,
Weibull, etc. (Finkelstein and Esaulova, 2006). In the bivariate case they obviously hold, at least, for all densities that
are positive and continuous at the origin.

It is worth to interpret our results in terms of copulas, which can be helpful in analyzing the competing risks
problems.

The following result, which defines simple sufficient conditions, is obvious and therefore its proof is omitted:

Corollary 1. Assume that the bivariate mixing Cdf is given by the copula C(u, v):

Π (z1, z2) = C(Π1(z1),Π2(z2)),

where Π1(z1), Π2(z2) are univariate Cdfs, which densities satisfy the following univariate conditions (Finkelstein and
Esaulova, 2006):

πi (z) = zαiπi,0(z), αi > −1,

where πi,0(z), i = 1, 2 are bounded in [0,∞), continuous and positive at z = 0 (admissible class).
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Then the bivariate conditions (a) and (b) of the theorem are satisfied, if c(u, v) =
∂2C
∂u∂v (u, v) can be represented

as

c(u, v) = uγ1vγ2 c0(u, v), (21)

where c0(u, v) is continuous and positive at (0, 0) and γ1, γ2 ≥ 0.

Example. Farlie–Gumbel–Morgenstern copula. The corresponding mixing distribution is defined via the copula:

C(u, v) = uv(1 + θ(1 − u)(1 − v)),

where |θ | ≤ 1, u, v ∈ [0, 1]. Since

∂2C

∂u∂v
(u, v) = 1 + θ(1 − 2u)(1 − 2v)

is continuous at the origin and positive there if θ > −1, the bivariate conditions hold when −1 < θ ≤ 1. Therefore,
the results of the theorem hold if the univariate Cdfs belong to the admissible class.

Other mixing distributions that meet the conditions of the theorem are the Dirichlet distribution (Kotz et al., 2000, p.
485), the inverted Dirichlet distribution (Kotz et al., 2000, p. 491), some types of multivariate logistic distributions
(Kotz et al., 2000, p. 551) and some types of special bivariate extreme value distributions (Kotz et al., 2000, p. 625).

There are also examples where conditions of the theorem do not hold. This happens, e.g., when the joint Cdf
depends on max(z1, z2) and is not absolutely continuous. The widely used bivariate exponential distribution of
Marshall and Olkin with the survival function

Π̄ (z1, z2) = e−γ1z1−γ2z2−γ12 max(z1,z2)

is a relevant example. Some multivariate Weibull distributions also employ max functions and are not absolutely
continuous at (0, 0). The corresponding examples can be also found in Kotz et al. (2000, p. 431).

Finally, in order to illustrate explicitly the main result of this paper given by the theorem, assume that the lifetimes
of both components can be described by the PH model (2) and α1 = α2 = 0. Then, as t → ∞, in accordance with
(15)

λm,s(t) ∼
λ1(t)∫ t

0 λ1(u)du
+

λ2(t)∫ t
0 λ2(u)du

,

which is a simple and easy interpretable asymptotic formula.
If the lifetimes of both components are described by the ALM model (3), then the asymptotics are surprisingly

simple:

λm,s(t) ∼
2
t
.

Both of these formulas show that in this case (α1 = α2 = 0) the asymptotic behavior of the system mixture failure
rate does not depend on the mixing distribution at all.
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